
On logarithmic-factor speedup algorithms for some classic problems
YeahPotato

January 7, 2025

Abstract

This survey discusses techniques that speed up the time complexity of algorithms for certain
problems (mainly those under the scope of fine-grained complexity) by a logarithmic factor, and
provides a brief overview of works aimed at improving the lower bound. Four main problems
are discussed: boolean matrix multiplication (introducing bit-parallelization and the method of
four Russians), longest common subsequence, 3-sum, and all pairs shortest path.

1 Introduction
Among the history of algorithmic improvements for specific problems, one type of speedup is

often overlooked compared to optimizations on polynomial order. Typically, we are concerned with
problems such as, “Can we reduce the time from O(n2) to O(n logn)?” or “Is it possible to remove
the logn factor from O(n logn)?”.

In this survey, however, we focus on algorithms that run in O
(

nk

polylog(n)

)
time, providing a

logarithmic speedup compared to the trivial algorithms. Our discussion is based on the word
RAM model—w = Ω(logn) bits can be processed simultaneously, where n is the problem size.
The techniques discussed are essentially complicated variations of the idea proposed by [ADKF70],
mainly bit parallelization and preprocessing all possible scenarios of the locality of the unoptimized
algorithm model.

This technique can also be applied to other problems not covered in this survey but worth
mentioning. Using the method of four Russians, the lowest common ancestor (LCA) problem,
range minimum query (RMQ) problem (see [BFC00]), level ancestor (LA) problem (see [BFC04]),
and other related problems (see [Jin23]), have been optimized to O(n) preprocessing and O(1)
query time, removing the logn factor from the common algorithms.

We consider these problems under the category of fine-grained complexity theory. Fine-grained
complexity focuses on determining the exact polynomial order of time complexity achievable by the
best algorithm for a given problem. Based on the following conjectures, a class of problems has been
shown to be unlikely to have an algorithm with time complexity below a specific polynomial order
bound (known as the conditional lower bound), via fine-grained reductions, which is analogous to
polynomial-time reductions used to prove NP-hardness:

1. Strong Exponential Time Hypothesis (SETH): kSAT cannot be solved in O(2(1−ϵ)n) time.
2. APSP cannot be solved in O(n3−ϵ) time.
3. 3SUM cannot be solved in O(n2−ϵ) time.

1

The introduction to fine-grained complexity presented above is based on [Bri21]. We will not
discuss the hardness results further in the subsequent sections, but present algorithms that opti-
mize the algorithms for LCS, 3SUM, and APSP by a logarithmic factor, which do not violate the
conjectures mentioned above. We will first discuss BMM to illustrate the basic idea of optimization.

In researching the papers and algorithms, the content of [Li23] was particularly helpful and is
itself a high-quality survey of this topic.

2 Preliminaries
We analyze time complexity based on the word RAM model with word size w. We assume

that equality, comparison, and addition between elements can be performed in O(1) time. If not
specified, Ai (Ai,j) denotes the i-th (row and j-th column) element of sequence (matrix) A, and
indices start from 1. We will not omit the log logn factor in complexity unless Ô is used.

3 The boolean matrix multiplication problem
Problem 1 (BMM). Given two n× n boolean matrices A, B, compute n× n matrix C, such that

Ci,j =

n∨
k=1

(Ai,k ∧Bk,j) .

This problem is weaker than the general matrix multiplication, which has an O(nω) algorithm,
with ω ≈ 2.37 so far ([Wik24]). Here, however, we focus only on combinatorial algorithms.

[ADKF70] introduced a groundbreaking algorithm, widely known as “the method of four Rus-
sians”. It works as follows: partition A into n× d and B into d× n smaller matrices, and consider
optimizing the multiplication of such a pair, namely A1 and B1.

Figure 1: The partitioning.

Denote the rows of A1 as a1, · · · , an and the rows of B1 as b1, · · · , bd. Although we need to
compute a1B, · · · , anB, there are only 2d possibilities among them, so we can precompute these
results by recursion. For a row vector a such that at = 1, we have

aB = (a \ t)B ∨ bt,

where a \ t means setting at to 0, and ∨ represents the “or” operation applied element-wise to the
two row vectors. Since we use the word RAM model, precomputation can be done in O

(
2d n

w

)
time,

2

and using them to compute A1B1 takes O
(
n2

w

)
time. Finally, taking the ∨ of all the products

requires O
(

n3

wd

)
time. Choosing d = logn, the overall time becomes O

(
n3

w logn

)
.

After decades, [BW09] presented an algorithm based on advanced graph theory techniques with
time complexity O

(
n3(log logn)2

(logn)9/4

)
, and [Cha15] subsequently gave an algorithm with time com-

plexity O
(
n3(log logn)3

(logn)3

)
using a relatively simple analysis. Then, [Yu15] introduced an algorithm

with Ô
(

n3

(logn)4

)
time complexity. The current best algorithm, presented by [AFK+24], runs in

n3

2Ω((log n)1/7)
time, which is a speedup strictly stronger than any polylogarithmic factor.

4 The longest common subsequence problem
Problem 2 (LCS). Given two sequences A and B of length n, find the length of the longest common
subsequence (LCS) of A and B. A subsequence of a sequence is obtained by removing zero or more
elements from it, while preserving the order of the remaining elements. Here, we assume the range
of Ai and Bi is a finite set Σ.

The common O(n2) algorithm is a dynamic programming approach: let A[l, r] denote the
consecutive subsequence (al, · · · , ar) of A. We need to calculate fi,j—the LCS of A[1, i] and B[1, j]
—for every 0 ≤ i, j ≤ n. The recurrence is given by:

fi,j =


0, i = 0 ∨ j = 0
max{fi−1,j , fi,j−1}, i, j ≥ 1 ∧Ai ̸= Bj

fi−1,j−1 + 1, i, j ≥ 1 ∧Ai = Bj

.

Thus, fn,n gives the final answer. A practical O
(
n2

w

)
algorithm is presented in [CIPR01],

which exploits the parallelized bitwise operations of the word RAM model. The brief description
of [CIPR01]’s algorithm is as follows:

Let di,j = fi,j − fi,j−1. We can show that 0 ≤ di,j ≤ 1 by considering the meanings of fi,j and
fi,j−1, so (di,1, · · · , di,n) can be seen as a boolean vector, denoted as di. We want to compute di
from di−1.

We calculate di,j from j = 1 to n. The transition can be divided into three stages:

1. fi,j−1 = fi−1,j−1, and Ai ̸= Bj or di−1,j = 1. Simply fi,j = fi−1,j and di,j = di−1,j .
2. fi,j−1 = fi−1,j−1, and Ai = Bj and di−1,j = 0. fi,j will increase, fi,j = fi−1,j +1 and di,j = 1.
3. fi,j−1 = fi−1,j−1 + 1. It must be di,j = 0. Also fi,j = fi−1,j + 1 until di−1,j = 1.

In conclusion, as long as stage 2 is triggered, it will continue in stage 3 until di−1,j = 1, after
which it returns to stage 1, which is simply copying the elements of di−1. The entire process can
be interpreted as a combination of addition and bitwise operations if di is viewed as the binary
representation of an integer. Let d̄i = not di, the “chain effect” can be seen as the carry bit of the
addition process. We have

d̄i =
[
d̄i−1 +

(
d̄i−1 andmAi

)]
or
(
d̄i−1 and m̄Ai

)
,

where mc = ([B1 = c], · · · , [Bn = c]) and m̄c = notmc. Both mc and m̄c can also be viewed as
integers.

3

Figure 2: An example, A = aaaaababbccc, B = bcbcacbbacba, i = 10.
Blue, green and orange&red grids represent stage 1, 2, 3 respectively.

Since the involved operations can be performed in O
(
n
w

)
time, the overall time complexity is

O
(
n2

w

)
, and the memory complexity is O(n).

[MP80] uses a similar technique to the method of four Russians, leading to a speedup by a log2 n
factor, under the assumption that |Σ| = O(1). For arbitrary |Σ|, [BFC08] achieves O

(
n2(log logn)2

log2 n

)
,

and [Gra16] improves it to O
(
n2 log logn

log2 n

)
.

The basic idea of [MP80] is to divide the table of d into y × y blocks, with adjacent blocks
sharing borders. For a block with i ∈ [i′y + 1, (i′ + 1)y] and j ∈ [j′y + 1, (j′ + 1)y], it can be fully
determined as long as its top row, leftmost column, and A[i′y+1, (i′+1)y] and B[j′y+1, (j′+1)y]
are given. If |Σ| = C ≥ 2, then 2y(1 + logC) bits are needed to represent this information.

We can precompute the result (only the bottom row and rightmost column of d of the block
are needed for subsequent calculation) for all these Θ(22yC2y) possibilities in O(22yC2yy2) time,
and then compute the values of all blocks in O(l ·n2/y2) time, with lookups from the precomputed
results done in l = Θ

(
y

logn

)
time. Taking y =

⌊
logn
4 logC

⌋
= Θ(logn) leads to l = O(1), and the

overall time complexity becomes O
(

n2

log2 n

)
.

For the case where |Σ| is not constant, [Gra16] designs a more delicate structure: consider
A[i′y+ 1, (i′ + 1)y], a snippet of length y at a time. Relabel the elements of B by equality relation
with elements of A[i′y + 1, (i′ + 1)y] so that a block of d with dimensions x1 × x2, where the first
dimension is fixed, can now be determined using x1 + x2(1 + log(y + 1)) bits. Precompute all the
possibilities for each snippet. The overall time complexity is:

O

(
n2

y
log y + n

x1
2x1+x2(y + 1)x2x1x2 +

n2

x1x2
· (x1 + x2) log y

logn

)
.

Taking y = log2 n
2 , x1 = logn

4 , x2 = logn
4 log logn , the resulting time complexity will be O

(
n2 log logn

log2 n

)
.

No better algorithm is known.

4

5 The 3-sum problem
Problem 3 (3SUM). Given a set A ⊆ U , determine whether ∃a, b, c ∈ A such that a+ b+ c = 0.

An O(n2) algorithm is based on the two-pointers technique. First, sort the elements of A,
denoted as a1, · · · , an, in increasing order. We can run the following algorithm:

Algorithm 1 Brute force for 3SUM
for i← 1 to n do

k ← n
for j ← i to k do

while k > j ∧ ai + aj + ak > 0 do
k

−←− 1
if ai + aj + ak = 0 then

Report finding (ai, aj , ak)

Report not found

We focus on U = R. [GP18] developed several faster algorithms based on this method, initially
presenting a slow algorithm but with only O(n3/2

√
logn) decision tree complexity. The main idea is

to partition a1, · · · , an into groups of size g, namely A1, · · · , A⌈n/g⌉, where Ai = {at | (i−1)g < t ≤
ig}, and then keep the first loop. Instead of enumerating j and k as single elements, we enumerate
them as two groups, and check if −ai ∈ Aj,k = Aj +Ak = {x+ y | x ∈ Aj , y ∈ Ak}.

In the following analysis, we denote Aj(x) as the x-th element of Aj . We assume there are no
duplicate elements in the definitions of Aj and Aj,k, as ties can be broken by perturbation or by
taking the index into account.

This algorithm uses binary search to speed up the checking process to O(log g), resulting in
a total complexity of O

(
n2 log g

g

)
. Sorting each Aj,k is then required. The number of possible

orders of Aj,k has an upper bound of (g2)!. Consider enumerating these permutations, denoted as
π1, π2 : [g2] → [g], which corresponds to Aj(π1(t)) + Ak(π2(t)) being the t-th smallest element. A
permutation sorts some Aj,k correctly iff for all t,

Aj(π1(t)) +Ak(π2(t)) < Aj(π1(t+ 1)) + Ak(π2(t+ 1))

⇐⇒ Aj(π1(t))−Aj(π1(t+ 1)) < Ak(π2(t+ 1))−Ak(π2(t)).

Thus, we can regard (Aj(π1(1))−Aj(π1(2)), · · · , Aj(π1(g
2−1))−Aj(π1(g

2))) and (Ak(π2(2))−
Ak(π2(1)), · · · , Ak(π2(g

2)) − Ak(π2(g
2 − 1))) as two g2-dimensional points (red and blue). Now

finding all the Aj,ks that can be sorted by (π1, π2) is equivalent to finding all pairs consisting of a
red and a blue point, where every coordinate of the red point is less than that of the blue point.

For this problem, [GP18] presents a divide-and-conquer algorithm. If the input consists of

n d-dimensional points, it runs in O

((
2ϵ

2ϵ−1

)d
n1+ϵ + output size

)
time for all ϵ > 0. We omit

the details here. Taking ϵ = 1
2 , the sorting step takes O

((
g2
)
!
(
2 +
√
2
)g2 (2n

g

)3/2
+ n2

g2

)
time,

since each Aj,k will be correctly sorted once. For the binary search part, since the query entries
[−ai ∈ Aj,k] are known before sorting, we can simply process the queries right after Aj,k is found
sorted. The time complexity remains O

(
n2 log g

g

)
.

5

Taking g = 1
2

√
logn

log logn , the dominating term for the sorting time will be n2

g2
, which results in a

time complexity of O
(
n2(log logn)3/2

(logn)1/2

)
. By [Fre76a], there are actually only O(g8g) possible orders

of all Aj,k, so taking g =

√
logn

2 reduces the time complexity to O
(
n2 log logn
(logn)1/2

)
.

Further optimization from [GP18] reduces the time complexity to O
(
n2(log logn)2/3

(logn)2/3

)
by prevent-

ing the sorting of the entire Aj,k. This optimization narrows down the region to the space be-
tween two contours. A randomized algorithm based on the same approach runs in O

(
n2(log logn)2

logn

)
time. [KLM18] further lowers the decision tree complexity to O(n log2 n), and the SOTA algorithm
[Cha19] runs in O

(
n(log logn)O(1)

log2 n

)
time using a geometric approach. These algorithms are more

complicated, so we do not delve into the details here.

6 The all-pairs shortest path problem
Problem 4 (APSP). Given a directed graph G = (V,E) with |V | = n, and assuming there is a
weighted edge between every ordered pair of vertices, where the weights are nonnegative real numbers,
find the shortest path between each pair of vertices.

The basic O(n3) algorithm for this problem is the Floyd-Warshall algorithm [Flo62], which
essentially computes the closure of the adjacency matrix. In this case, the addition and multipli-
cation operations in the definition of matrix multiplication are replaced by minimum and addition
operations. This is known as min-plus matrix multiplication. [AH74] states that:

The time necessary to compute the closure of a matrix of nonnegative reals, with
operations MIN and + playing the role of addition and multiplication of scalars, is of
the same order as the time to compute the product of two matrices of this type.

Thus, we only need to focus on the min-plus matrix multiplication problem.

Problem 5 ((min,+) MM). Given two n× n real matrices A, B, calculate matrix C, such that

Ci,j =
n

min
k=1
{Ai,k +Bk,j}.

The first breakthrough in this problem was made by [Fre76b], who developed a decision tree
with O(n5/2) complexity and an algorithm with time complexity O

(
n3(log logn)1/3

(logn)1/3

)
. The algorithm

starts by dividing matrix A into b×m stripes and matrix B into m×b stripes. The original problem
can then be reduced to performing n3

b2m
multiplications between b×m and m×b matrices, alongside

O
(
n3

m

)
min operations. For a b×m matrix A1 and an m× b matrix B1, multiplying them needs

comparisons between ai,r + br,j and ai,s + bs,j for every 1 ≤ i, j ≤ b and 1 ≤ r < s ≤ m, where
a·,· and b·,· denotes the elements of A1 and B1. We can use transposition of terms, to change the
values needed for comparison to ai,r − ai,s and bs,j − br,j . So we just sort {ai,r − ai,s} ∪ {bs,j − br,j}
for every r, s to obtain

(
m
2

)
lists {Lr,s}, and no more information is needed. Sorting requires

O(m2b log b) comparison in total, so we can precompute a decision tree of this depth, to obtain
the result of all matrix multiplications efficiently, i.e. we can directly know argminm

k=1{ai,k + bk,j}
without enumerating through k.

6

[Fre76b] further notes that the information complexity can be reduced. Consider a 2mb-
dimensional space, where each dimension corresponds to an element of A1 or B1. We construct(
m
2

)(
2b
2

)
= Θ(m2b2) hyperplanes: ai,r − ai,s = ai′,r − ai′,s, bs,j − br,j = bs,j′ − br,j′ , and ai,r − ai,s =

bs,j−br,j . Then, each possible order corresponds to a region. According to [Buc43], an r-dimensional
space can be partitioned into at most O(rnr) regions by n hyperplanes, so the information com-
plexity is reduced to O(mb logmb).

[Fre76a] provides an algorithm to construct a decision tree for sorting a sequence of length n,
under the constraint that only the orders in a subset Γ of n-permutations are possible. The tree
has depth log |Γ |+O(n), and its construction can be done in polynomial time in |Γ |. In this case,
n = Θ(m2b), so the depth is O(m2b), and the construction time is exp(O(mb logmb)).

Now if Γ can be obtained in time T , then the total time will be

O

(
T + exp(O(mb logmb)) + n3

(
m

b
+

1

m

))
.

To obtain Γ , we consider sampling at least one point from each region. It can be proven
that such points can all be obtained by solving the intersections of hyperplanes: ai,r − ai,s =
ai′,r − ai′,s ± 1, bs,j − br,j = bs,j′ − br,j′ ± 1, ai,r − ai,s = bs,j − br,j ± 1, ai,r = 0, and bj,r = 0.
For the intersections, we only need to calculate the {Lr,s}s and remove duplicates. Since there are
O((m2b2)2mb) intersections, T will also be exp(O(mb logmb)).

Finally, we need to choose m and b such that the exp(O(mb logmb)) term doesn’t dominate,
and the term m

b + 1
m is minimized. By choosing m = c (logn)1/3

(log logn)1/3
and b = m2 for a sufficiently

small constant c, we get the time complexity:

O

(
n3(log logn)1/3

(logn)1/3

)
.

For further improvements, [Tak92] works under the same framework and achieves a time com-
plexity of O

(
n3(log logn)1/2

(logn)1/2

)
. The result of O

(
n3

logn

)
was achieved in [Cha08], while [HT12] achieves

O
(
n3 log logn
(logn)2

)
. The current SOTA result [Wil14], based on tools from circuit complexity, runs in

time n3

2Ω((log n)1/2)
.

Here we shall mention another very common problem closely related to the problem above:

Problem 6 ((min,+) Conv). Given two real sequences A, B of length n, compute sequence C of
length n, such that

Ci = min
j+k=i

{Aj +Bk}.

We make indices start from 0 for alignment. This problem can be reduced to (min,+) MM. By
[BCD+06], we can construct the following multiplication between a n

d × d and a d× n matrix:
A0 A1 · · · Ad−1

Ad Ad+1 · · · A2d
...

...
An−d An−d+1 · · · An−1



B0 B1 · · · Bn−1

+∞ B0 · · · Bn−2
...

...
+∞ +∞ · · · Bn−d

 =


P0,0 P0,1 · · · P0,n−1

P1,0 P1,1 · · · P1,n−1
...

...
Pn

d
−1,0 Pn

d
−1,1 · · · Pn

d
−1,n−1

 ,

7

Ci =
⌊i/d⌋
min
j=0
{Pj,i−jd}.

Take d =
√
n. If n × n (min,+) matrix multiplication can be done in M(n) = n3

R(n) time, then

the convolution can be done in O(
√
nM(
√
n)) = O

(
n2

R(√n)

)
time.

7 Conclusion
From the algorithms discussed above, we can observe that those following the method of four

Russians generally work by identifying the gap between information complexity and actual com-
putational complexity, and try to precompute the results of all possible cases. However, since the
number of possibilities grows exponentially with n, they can only divide the input into small groups
or pieces and make trade-offs, seeking a balance between precomputation and actual computation.
The decision tree complexity cannot be fully realized.

While different approaches to breaking down the model or varying the processing order may
lead to significant improvements, most of the algorithms require a careful analysis of information
complexity—that is, counting the possible cases. As a result, combinatorics, information theory,
and more advanced mathematical tools are increasingly used. Some SOTA methods even rely on
tools from circuit complexity, and surprisingly, shaving logs is also related to computation hardness.
[AHWW16] shows that

If Edit Distance or LCS on two binary sequences of length n can be solved in
O(n2/ logc n) time for every c > 0, then NTIME[2O(n)] does not have non-uniform
polynomial-size log-depth circuits.

Finally, regarding parallelized bitwise operations, actually every algorithm implicitly or explic-
itly uses this property. It’s needed for encoding and addressing the possibilities, or at least for
performing basic operations like additions. Algorithms for BMM and LCS (the first one) explicitly
leverage parallelization, and these are the two algorithms actually practical. Other algorithms have
large constant factors. To prevent precomputation time from exceeding the desired complexity, the
group/block sizes need to be kept very small, and the optimization will barely be effective or may
even lead to deoptimization.

References
[ADKF70] V. L. Arlazarov, Y. A. Dinitz, M. A. Kronrod, and I. A. Faradzhev, On economical

construction of the transitive closure of an oriented graph, Dokl. Akad. Nauk SSSR,
vol. 194, 1970, pp. 487–488.

[AFK+24] Amir Abboud, Nick Fischer, Zander Kelley, Shachar Lovett, and Raghu Meka, New
graph decompositions and combinatorial boolean matrix multiplication algorithms, Pro-
ceedings of the 56th Annual ACM Symposium on Theory of Computing (New York,
NY, USA), STOC 2024, Association for Computing Machinery, 2024, p. 935–943.

[AH74] Alfred V. Aho and John E. Hopcroft, The design and analysis of computer algorithms,
1st ed., Addison-Wesley Longman Publishing Co., Inc., USA, 1974.

8

[AHWW16] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan
Williams, Simulating branching programs with edit distance and friends: or: a polylog
shaved is a lower bound made, Proceedings of the Forty-Eighth Annual ACM Sym-
posium on Theory of Computing (New York, NY, USA), STOC ’16, Association for
Computing Machinery, 2016, p. 375–388.

[BCD+06] David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado,
John Iacono, Stefan Langerman, and Perouz Taslakian, Necklaces, convolutions, and
x + y, Proceedings of the 14th Conference on Annual European Symposium - Volume
14 (Berlin, Heidelberg), ESA’06, Springer-Verlag, 2006, p. 160–171.

[BFC00] Michael A. Bender and Martı́n Farach-Colton, The lca problem revisited, Proceedings
of the 4th Latin American Symposium on Theoretical Informatics (Berlin, Heidelberg),
LATIN ’00, Springer-Verlag, 2000, p. 88–94.

[BFC04] , The level ancestor problem simplified, Theoretical Computer Science 321
(2004), no. 1, 5–12, Latin American Theoretical Informatics.

[BFC08] Philip Bille and Martı́n Farach-Colton, Fast and compact regular expression matching,
Theoretical Computer Science 409 (2008), no. 3, 486–496.

[Bri21] Karl Bringmann, Fine-grained complexity theory: Conditional lower bounds for com-
putational geometry, p. 60–70, Springer International Publishing, 2021.

[Buc43] R. Creighton Buck, Partition of space, American Mathematical Monthly 50 (1943),
541–544.

[BW09] Nikhil Bansal and Ryan Williams, Regularity lemmas and combinatorial algorithms,
Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer
Science (USA), FOCS ’09, IEEE Computer Society, 2009, p. 745–754.

[Cha08] Timothy M. Chan, All-pairs shortest paths with real weights in O(n3/ logn) time,
Algorithmica 50 (2008), no. 2, 236–243.

[Cha15] , Speeding up the four russians algorithm by about one more logarithmic fac-
tor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms (USA), SODA ’15, Society for Industrial and Applied Mathematics, 2015,
p. 212–217.

[Cha19] , More logarithmic-factor speedups for 3sum, (median,+)-convolution, and some
geometric 3sum-hard problems, ACM Trans. Algorithms 16 (2019), no. 1, 1–23.

[CIPR01] Maxime Crochemore, Costas S. Iliopoulos, Yoan J. Pinzon, and James F. Reid, A
fast and practical bit-vector algorithm for the longest common subsequence problem,
Information Processing Letters 80 (2001), no. 6, 279–285.

[Flo62] Robert W. Floyd, Algorithm 97: Shortest path, Commun. ACM 5 (1962), no. 6, 345.

[Fre76a] Michael L. Fredman, How good is the information theory bound in sorting?, Theoretical
Computer Science 1 (1976), no. 4, 355–361.

9

[Fre76b] , New bounds on the complexity of the shortest path problem, SIAM J. Comput.
5 (1976), no. 1, 83–89.

[GP18] Allan Grønlund and Seth Pettie, Threesomes, degenerates, and love triangles, J. ACM
65 (2018), no. 4, 1–25.

[Gra16] Szymon Grabowski, New tabulation and sparse dynamic programming based techniques
for sequence similarity problems, Discrete Applied Mathematics 212 (2016), 96–103,
Stringology Algorithms.

[HT12] Yijie Han and Tadao Takaoka, An O(n3 log logn/ log2 n) time algorithm for all pairs
shortest paths, Algorithm Theory – SWAT 2012 (Berlin, Heidelberg) (Fedor V. Fomin
and Petteri Kaski, eds.), Springer Berlin Heidelberg, 2012, pp. 131–141.

[Jin23] Huai’en Jin, 【理性愉悦】如何优雅地玩转线性-常数时间复杂度, https://
return20071007.blog.uoj.ac/blog/8573, Jul 2023, [Online; accessed 7-January-
2025].

[KLM18] Daniel M. Kane, Shachar Lovett, and Shay Moran, Near-optimal linear decision trees
for k-sum and related problems, Proceedings of the 50th Annual ACM SIGACT Sym-
posium on Theory of Computing (New York, NY, USA), STOC 2018, Association for
Computing Machinery, 2018, p. 554–563.

[Li23] Baitian Li, 一些经典问题比暴力快一点点的算法, https://www.cnblogs.com/
Elegia/p/slightly-faster-than-brute-force.html, Aug 2023, [Online; accessed
7-January-2025].

[MP80] William J. Masek and Michael S. Paterson, A faster algorithm computing string edit
distances, Journal of Computer and System Sciences 20 (1980), no. 1, 18–31.

[Tak92] Tadao Takaoka, A new upper bound on the complexity of the all pairs shortest path
problem, Information Processing Letters 43 (1992), no. 4, 195–199.

[Wik24] Wikipedia contributors, Computational complexity of matrix multiplication —
Wikipedia, the free encyclopedia, https://en.wikipedia.org/w/index.php?title=
Computational_complexity_of_matrix_multiplication&oldid=1263768929,
2024, [Online; accessed 7-January-2025].

[Wil14] Ryan Williams, Faster all-pairs shortest paths via circuit complexity, Proceedings of
the Forty-Sixth Annual ACM Symposium on Theory of Computing (New York, NY,
USA), STOC ’14, Association for Computing Machinery, 2014, p. 664–673.

[Yu15] Huacheng Yu, An improved combinatorial algorithm for boolean matrix multipli-
cation, Automata, Languages, and Programming (Berlin, Heidelberg) (Magnús M.
Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, eds.), Springer
Berlin Heidelberg, 2015, pp. 1094–1105.

10

https://return20071007.blog.uoj.ac/blog/8573
https://return20071007.blog.uoj.ac/blog/8573
https://www.cnblogs.com/Elegia/p/slightly-faster-than-brute-force.html
https://www.cnblogs.com/Elegia/p/slightly-faster-than-brute-force.html
https://en.wikipedia.org/w/index.php?title=Computational_complexity_of_matrix_multiplication&oldid=1263768929
https://en.wikipedia.org/w/index.php?title=Computational_complexity_of_matrix_multiplication&oldid=1263768929

	Introduction
	Preliminaries
	The boolean matrix multiplication problem
	The longest common subsequence problem
	The 3-sum problem
	The all-pairs shortest path problem
	Conclusion

